Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36850706

RESUMEN

This paper presents a comprehensive review of the state-of-the-art developments in health monitoring of marine structures. Monitoring the health of marine structures plays a key role in reducing the risk of structural failure. The authors establish the different sensors with their theoretical foundations and applications in order to determine the optimal position of the sensors on board. Once the data were collected, it was necessary to use for subsequent treatment; thus, the authors identified the different methodologies related to the treatment of data collected by the sensors. The authors provide a historical review of the location of different sensors depending on the type of ship and offshore platform. Finally, this review paper states the conclusions and future trends of this technology.

2.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36236000

RESUMEN

One of the most common applications of glass fiber composite materials (GFRP) is the manufacturing of the hulls of high-speed boats. During navigation, the hull of these boats is subjected to repetitive impacts against the free surface of the water (slamming effect), which can cause severe damage to the material. To better understand the behavior of the composite material under this effect, in the present work, an experimental test has been carried out to reproduce the slamming phenomenon in GFRP panels by means of a novel device that allows this cyclic impact to be obtained while the panels are always in contact with water. By means of non-destructive ultrasound inspection in immersion, it has been possible to establish the evolution of the damage according to the number of impacts received by each panel. Destructive tests in the affected zone, specifically shear tests (Iosipescu test), allow determination of the loss of mechanical properties experienced by the material after receiving a high number of impacts in the presence of water (up to 900,000 impact cycles in some panels). The behavior of the material was found to be very different in wet and dry conditions. Under dry conditions, the material loses stiffness as the damage density increases and its shear strength also decreases, as does displacement at maximum load. For wet conditions, the material shows higher displacements at maximum load, while the shear strength decreases with increasing stiffness.

3.
Materials (Basel) ; 14(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832199

RESUMEN

This research shows the results of an experimental investigation carried out on the compression behavior of hybrid steel tubes formed by two concentric steel tubes and four different fillers of non-metallic material interposed between both tubes: polyurethane foam, polyurethane, epoxy and a cement-based mortar. The tests show that the incorporation of a resistant filler in the double tube allows it to improve its mechanical behavior by allowing a second load cycle. Furthermore, the strain energy absorbed during the two cycles led to the conclusion that the epoxy-filled tube absorbed more energy per unit of weight than the other resistant fillers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...